SelfHost/Test Environment/admin/spiderbasic/forge/sha512.js
2025-12-15 19:46:13 +01:00

464 lines
13 KiB
JavaScript

/**
* Secure Hash Algorithm with a 1024-bit block size implementation.
*
* This includes: SHA-512, SHA-384, SHA-512/224, and SHA-512/256. For
* SHA-256 (block size 512 bits), see sha256.js.
*
* See FIPS 180-4 for details.
*
* @author Dave Longley
*
* Copyright (c) 2014-2015 Digital Bazaar, Inc.
*/
(function() {
/* ########## Begin module implementation ########## */
function initModule(forge) {
var sha512 = forge.sha512 = forge.sha512 || {};
// FIXME: backwards compatibility
sha512.create = function(algorithm) {
// SHA-512 => sha512
algorithm = algorithm || 'sha512';
algorithm = algorithm.replace('-', '').toLowerCase();
return forge.md.createMessageDigest(algorithm);
};
var sha2 = {};
sha2.Algorithm = {};
sha2.Algorithm.base = function() {
this.blockSize = 128;
this.messageLengthSize = 16;
};
sha2.Algorithm.base.prototype.writeMessageLength = function(
finalBlock, messageLength) {
// message length is in bits and in big-endian order; simply append
finalBlock.putBuffer(messageLength);
};
sha2.Algorithm.base.prototype.digest = function(s, input) {
// consume 512 bit (128 byte) chunks
var t1_hi, t1_lo;
var t2_hi, t2_lo;
var s0_hi, s0_lo;
var s1_hi, s1_lo;
var ch_hi, ch_lo;
var maj_hi, maj_lo;
var a_hi, a_lo;
var b_hi, b_lo;
var c_hi, c_lo;
var d_hi, d_lo;
var e_hi, e_lo;
var f_hi, f_lo;
var g_hi, g_lo;
var h_hi, h_lo;
var i, hi, lo, w2, w7, w15, w16;
var h = s.h;
var len = input.length();
while(len >= 128) {
// the w array will be populated with sixteen 64-bit big-endian words
// and then extended into 64 64-bit words according to SHA-512
for(i = 0; i < 16; ++i) {
_w[i][0] = input.getInt32() >>> 0;
_w[i][1] = input.getInt32() >>> 0;
}
for(; i < 80; ++i) {
// for word 2 words ago: ROTR 19(x) ^ ROTR 61(x) ^ SHR 6(x)
w2 = _w[i - 2];
hi = w2[0];
lo = w2[1];
// high bits
t1_hi = (
((hi >>> 19) | (lo << 13)) ^ // ROTR 19
((lo >>> 29) | (hi << 3)) ^ // ROTR 61/(swap + ROTR 29)
(hi >>> 6)) >>> 0; // SHR 6
// low bits
t1_lo = (
((hi << 13) | (lo >>> 19)) ^ // ROTR 19
((lo << 3) | (hi >>> 29)) ^ // ROTR 61/(swap + ROTR 29)
((hi << 26) | (lo >>> 6))) >>> 0; // SHR 6
// for word 15 words ago: ROTR 1(x) ^ ROTR 8(x) ^ SHR 7(x)
w15 = _w[i - 15];
hi = w15[0];
lo = w15[1];
// high bits
t2_hi = (
((hi >>> 1) | (lo << 31)) ^ // ROTR 1
((hi >>> 8) | (lo << 24)) ^ // ROTR 8
(hi >>> 7)) >>> 0; // SHR 7
// low bits
t2_lo = (
((hi << 31) | (lo >>> 1)) ^ // ROTR 1
((hi << 24) | (lo >>> 8)) ^ // ROTR 8
((hi << 25) | (lo >>> 7))) >>> 0; // SHR 7
// sum(t1, word 7 ago, t2, word 16 ago) modulo 2^64 (carry lo overflow)
w7 = _w[i - 7];
w16 = _w[i - 16];
lo = (t1_lo + w7[1] + t2_lo + w16[1]);
_w[i][0] = (t1_hi + w7[0] + t2_hi + w16[0] +
((lo / 0x100000000) >>> 0)) >>> 0;
_w[i][1] = lo >>> 0;
}
// initialize hash value for this chunk
a_hi = h[0][0];
a_lo = h[0][1];
b_hi = h[1][0];
b_lo = h[1][1];
c_hi = h[2][0];
c_lo = h[2][1];
d_hi = h[3][0];
d_lo = h[3][1];
e_hi = h[4][0];
e_lo = h[4][1];
f_hi = h[5][0];
f_lo = h[5][1];
g_hi = h[6][0];
g_lo = h[6][1];
h_hi = h[7][0];
h_lo = h[7][1];
// round function
for(i = 0; i < 80; ++i) {
// Sum1(e) = ROTR 14(e) ^ ROTR 18(e) ^ ROTR 41(e)
s1_hi = (
((e_hi >>> 14) | (e_lo << 18)) ^ // ROTR 14
((e_hi >>> 18) | (e_lo << 14)) ^ // ROTR 18
((e_lo >>> 9) | (e_hi << 23))) >>> 0; // ROTR 41/(swap + ROTR 9)
s1_lo = (
((e_hi << 18) | (e_lo >>> 14)) ^ // ROTR 14
((e_hi << 14) | (e_lo >>> 18)) ^ // ROTR 18
((e_lo << 23) | (e_hi >>> 9))) >>> 0; // ROTR 41/(swap + ROTR 9)
// Ch(e, f, g) (optimized the same way as SHA-1)
ch_hi = (g_hi ^ (e_hi & (f_hi ^ g_hi))) >>> 0;
ch_lo = (g_lo ^ (e_lo & (f_lo ^ g_lo))) >>> 0;
// Sum0(a) = ROTR 28(a) ^ ROTR 34(a) ^ ROTR 39(a)
s0_hi = (
((a_hi >>> 28) | (a_lo << 4)) ^ // ROTR 28
((a_lo >>> 2) | (a_hi << 30)) ^ // ROTR 34/(swap + ROTR 2)
((a_lo >>> 7) | (a_hi << 25))) >>> 0; // ROTR 39/(swap + ROTR 7)
s0_lo = (
((a_hi << 4) | (a_lo >>> 28)) ^ // ROTR 28
((a_lo << 30) | (a_hi >>> 2)) ^ // ROTR 34/(swap + ROTR 2)
((a_lo << 25) | (a_hi >>> 7))) >>> 0; // ROTR 39/(swap + ROTR 7)
// Maj(a, b, c) (optimized the same way as SHA-1)
maj_hi = ((a_hi & b_hi) | (c_hi & (a_hi ^ b_hi))) >>> 0;
maj_lo = ((a_lo & b_lo) | (c_lo & (a_lo ^ b_lo))) >>> 0;
// main algorithm
// t1 = (h + s1 + ch + _k[i] + __w[i]) modulo 2^64 (carry lo overflow)
lo = (h_lo + s1_lo + ch_lo + _k[i][1] + _w[i][1]);
t1_hi = (h_hi + s1_hi + ch_hi + _k[i][0] + _w[i][0] +
((lo / 0x100000000) >>> 0)) >>> 0;
t1_lo = lo >>> 0;
// t2 = s0 + maj modulo 2^64 (carry lo overflow)
lo = s0_lo + maj_lo;
t2_hi = (s0_hi + maj_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
t2_lo = lo >>> 0;
h_hi = g_hi;
h_lo = g_lo;
g_hi = f_hi;
g_lo = f_lo;
f_hi = e_hi;
f_lo = e_lo;
// e = (d + t1) modulo 2^64 (carry lo overflow)
lo = d_lo + t1_lo;
e_hi = (d_hi + t1_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
e_lo = lo >>> 0;
d_hi = c_hi;
d_lo = c_lo;
c_hi = b_hi;
c_lo = b_lo;
b_hi = a_hi;
b_lo = a_lo;
// a = (t1 + t2) modulo 2^64 (carry lo overflow)
lo = t1_lo + t2_lo;
a_hi = (t1_hi + t2_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
a_lo = lo >>> 0;
}
// update hash state (additional modulo 2^64)
lo = h[0][1] + a_lo;
h[0][0] = (h[0][0] + a_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
h[0][1] = lo >>> 0;
lo = h[1][1] + b_lo;
h[1][0] = (h[1][0] + b_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
h[1][1] = lo >>> 0;
lo = h[2][1] + c_lo;
h[2][0] = (h[2][0] + c_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
h[2][1] = lo >>> 0;
lo = h[3][1] + d_lo;
h[3][0] = (h[3][0] + d_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
h[3][1] = lo >>> 0;
lo = h[4][1] + e_lo;
h[4][0] = (h[4][0] + e_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
h[4][1] = lo >>> 0;
lo = h[5][1] + f_lo;
h[5][0] = (h[5][0] + f_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
h[5][1] = lo >>> 0;
lo = h[6][1] + g_lo;
h[6][0] = (h[6][0] + g_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
h[6][1] = lo >>> 0;
lo = h[7][1] + h_lo;
h[7][0] = (h[7][0] + h_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
h[7][1] = lo >>> 0;
len -= 128;
}
return s;
};
// register algorithms
_registerAlgorithm('sha512', 64);
_registerAlgorithm('sha384', 48);
_registerAlgorithm('sha512/256', 32);
_registerAlgorithm('sha512/224', 28);
// FIXME: backwards compatibility
forge.sha512.sha384 = forge.sha512.sha384 || forge.md.sha384;
forge.sha512.sha256 = forge.sha512.sha256 || forge.md['sha512/256'];
forge.sha512.sha224 = forge.sha512.sha224 || forge.md['sha512/224'];
function _registerAlgorithm(name, digestLength) {
sha2.Algorithm[name] = function() {
this.name = name;
this.digestLength = digestLength;
};
sha2.Algorithm[name].prototype = new sha2.Algorithm.base();
sha2.Algorithm[name].prototype.start = function() {
if(!_initialized) {
_init();
}
return _createState(name);
};
forge.md.registerAlgorithm(name, new sha2.Algorithm[name]());
}
function _createState(algorithm) {
var state = {};
state.copy = function() {
var rval = _createState(algorithm);
rval.h = new Array(state.h.length);
for(var i = 0; i < state.h.length; ++i) {
rval.h[i] = state.h[i].slice(0);
}
return rval;
};
state.write = function(buffer) {
var hlen;
if(algorithm === 'sha512') {
hlen = state.h.length;
} else if(algorithm === 'sha384') {
hlen = state.h.length - 2;
} else {
hlen = state.h.length - 4;
}
for(var i = 0; i < hlen; ++i) {
buffer.putInt32(state.h[i][0]);
if(i !== hlen - 1 || algorithm !== 'sha512/224') {
buffer.putInt32(state.h[i][1]);
}
}
};
// initial hash states
switch(algorithm) {
case 'sha512':
state.h = [
[0x6a09e667, 0xf3bcc908],
[0xbb67ae85, 0x84caa73b],
[0x3c6ef372, 0xfe94f82b],
[0xa54ff53a, 0x5f1d36f1],
[0x510e527f, 0xade682d1],
[0x9b05688c, 0x2b3e6c1f],
[0x1f83d9ab, 0xfb41bd6b],
[0x5be0cd19, 0x137e2179]
];
break;
case 'sha384':
state.h = [
[0xcbbb9d5d, 0xc1059ed8],
[0x629a292a, 0x367cd507],
[0x9159015a, 0x3070dd17],
[0x152fecd8, 0xf70e5939],
[0x67332667, 0xffc00b31],
[0x8eb44a87, 0x68581511],
[0xdb0c2e0d, 0x64f98fa7],
[0x47b5481d, 0xbefa4fa4]
];
break;
case 'sha512/256':
state.h = [
[0x22312194, 0xFC2BF72C],
[0x9F555FA3, 0xC84C64C2],
[0x2393B86B, 0x6F53B151],
[0x96387719, 0x5940EABD],
[0x96283EE2, 0xA88EFFE3],
[0xBE5E1E25, 0x53863992],
[0x2B0199FC, 0x2C85B8AA],
[0x0EB72DDC, 0x81C52CA2]
];
break;
case 'sha512/224':
state.h = [
[0x8C3D37C8, 0x19544DA2],
[0x73E19966, 0x89DCD4D6],
[0x1DFAB7AE, 0x32FF9C82],
[0x679DD514, 0x582F9FCF],
[0x0F6D2B69, 0x7BD44DA8],
[0x77E36F73, 0x04C48942],
[0x3F9D85A8, 0x6A1D36C8],
[0x1112E6AD, 0x91D692A1]
];
break;
}
return state;
}
// shared state
var _k = null;
var _w = null;
var _initialized = false;
/**
* Initializes the constant tables.
*/
function _init() {
// create K table for SHA-512
_k = [
[0x428a2f98, 0xd728ae22], [0x71374491, 0x23ef65cd],
[0xb5c0fbcf, 0xec4d3b2f], [0xe9b5dba5, 0x8189dbbc],
[0x3956c25b, 0xf348b538], [0x59f111f1, 0xb605d019],
[0x923f82a4, 0xaf194f9b], [0xab1c5ed5, 0xda6d8118],
[0xd807aa98, 0xa3030242], [0x12835b01, 0x45706fbe],
[0x243185be, 0x4ee4b28c], [0x550c7dc3, 0xd5ffb4e2],
[0x72be5d74, 0xf27b896f], [0x80deb1fe, 0x3b1696b1],
[0x9bdc06a7, 0x25c71235], [0xc19bf174, 0xcf692694],
[0xe49b69c1, 0x9ef14ad2], [0xefbe4786, 0x384f25e3],
[0x0fc19dc6, 0x8b8cd5b5], [0x240ca1cc, 0x77ac9c65],
[0x2de92c6f, 0x592b0275], [0x4a7484aa, 0x6ea6e483],
[0x5cb0a9dc, 0xbd41fbd4], [0x76f988da, 0x831153b5],
[0x983e5152, 0xee66dfab], [0xa831c66d, 0x2db43210],
[0xb00327c8, 0x98fb213f], [0xbf597fc7, 0xbeef0ee4],
[0xc6e00bf3, 0x3da88fc2], [0xd5a79147, 0x930aa725],
[0x06ca6351, 0xe003826f], [0x14292967, 0x0a0e6e70],
[0x27b70a85, 0x46d22ffc], [0x2e1b2138, 0x5c26c926],
[0x4d2c6dfc, 0x5ac42aed], [0x53380d13, 0x9d95b3df],
[0x650a7354, 0x8baf63de], [0x766a0abb, 0x3c77b2a8],
[0x81c2c92e, 0x47edaee6], [0x92722c85, 0x1482353b],
[0xa2bfe8a1, 0x4cf10364], [0xa81a664b, 0xbc423001],
[0xc24b8b70, 0xd0f89791], [0xc76c51a3, 0x0654be30],
[0xd192e819, 0xd6ef5218], [0xd6990624, 0x5565a910],
[0xf40e3585, 0x5771202a], [0x106aa070, 0x32bbd1b8],
[0x19a4c116, 0xb8d2d0c8], [0x1e376c08, 0x5141ab53],
[0x2748774c, 0xdf8eeb99], [0x34b0bcb5, 0xe19b48a8],
[0x391c0cb3, 0xc5c95a63], [0x4ed8aa4a, 0xe3418acb],
[0x5b9cca4f, 0x7763e373], [0x682e6ff3, 0xd6b2b8a3],
[0x748f82ee, 0x5defb2fc], [0x78a5636f, 0x43172f60],
[0x84c87814, 0xa1f0ab72], [0x8cc70208, 0x1a6439ec],
[0x90befffa, 0x23631e28], [0xa4506ceb, 0xde82bde9],
[0xbef9a3f7, 0xb2c67915], [0xc67178f2, 0xe372532b],
[0xca273ece, 0xea26619c], [0xd186b8c7, 0x21c0c207],
[0xeada7dd6, 0xcde0eb1e], [0xf57d4f7f, 0xee6ed178],
[0x06f067aa, 0x72176fba], [0x0a637dc5, 0xa2c898a6],
[0x113f9804, 0xbef90dae], [0x1b710b35, 0x131c471b],
[0x28db77f5, 0x23047d84], [0x32caab7b, 0x40c72493],
[0x3c9ebe0a, 0x15c9bebc], [0x431d67c4, 0x9c100d4c],
[0x4cc5d4be, 0xcb3e42b6], [0x597f299c, 0xfc657e2a],
[0x5fcb6fab, 0x3ad6faec], [0x6c44198c, 0x4a475817]
];
// now initialized
_initialized = true;
// used for 64-bit word storage
_w = new Array(80);
for(var i = 0; i < 80; ++i) {
_w[i] = new Array(2);
}
// now initialized
_initialized = true;
}
} // end module implementation
/* ########## Begin module wrapper ########## */
var name = 'sha512';
if(typeof define !== 'function') {
// NodeJS -> AMD
if(typeof module === 'object' && module.exports) {
var nodeJS = true;
define = function(ids, factory) {
factory(require, module);
};
} else {
// <script>
if(typeof forge === 'undefined') {
forge = {};
}
return initModule(forge);
}
}
// AMD
var deps;
var defineFunc = function(require, module) {
module.exports = function(forge) {
var mods = deps.map(function(dep) {
return require(dep);
}).concat(initModule);
// handle circular dependencies
forge = forge || {};
forge.defined = forge.defined || {};
if(forge.defined[name]) {
return forge[name];
}
forge.defined[name] = true;
for(var i = 0; i < mods.length; ++i) {
mods[i](forge);
}
return forge[name];
};
};
var tmpDefine = define;
define = function(ids, factory) {
deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2);
if(nodeJS) {
delete define;
return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0));
}
define = tmpDefine;
return define.apply(null, Array.prototype.slice.call(arguments, 0));
};
define(['require', 'module', './util', './md'], function() {
defineFunc.apply(null, Array.prototype.slice.call(arguments, 0));
});
})();